We consider the computation of the Euclidean (or L2) norm of an n-dimensional vector in floating-point arithmetic. We review the classical solutions used to avoid spurious overflow or underflow and/or to obtain very accurate results. We modify a recently ...
We present a robust technique to build a topologically optimal all-hexahedral layer on the boundary of a model with arbitrarily complex ridges and corners. The generated boundary layer mesh strictly respects the geometry of the input surface mesh, and it ...
We present the new software OpDiLib, a universal add-on for classical operator overloading AD tools that enables the automatic differentiation (AD) of OpenMP parallelized code. With it, we establish support for OpenMP features in a reverse mode operator ...
The standard LU factorization-based solution process for linear systems can be enhanced in speed or accuracy by employing mixed-precision iterative refinement. Most recent work has focused on dense systems. We investigate the potential of mixed-precision ...
We present a parallelized geometric multigrid (GMG) method, based on the cell-based Vanka smoother, for higher order space-time finite element methods (STFEM) to the incompressible Navier–Stokes equations. The STFEM is implemented as a time marching ...
MQSI is a Fortran 2003 subroutine for constructing monotone quintic spline interpolants to univariate monotone data. Using sharp theoretical monotonicity constraints, first and second derivative estimates at data provided by a quadratic facet model are ...
For control nets outlining a large class of topological polyhedra, not just tensor-product grids, bi-cubic polyhedral splines form a piecewise polynomial, first-order differentiable space that associates one function with each vertex. Akin to tensor-...
The minimum distance of a linear code is a key concept in information theory. Therefore, the time required by its computation is very important to many problems in this area. In this article, we introduce a family of implementations of the Brouwer–...
The robust scale estimator Qn developed by Croux and Rousseeuw [3], for the computation of which they provided a deterministic algorithm, has proven to be very useful in several domains including in quality management and time series analysis. It has ...
We present the new features available in the recent release of SuperLU_DIST, Version 8.1.1. SuperLU_DIST is a distributed-memory parallel sparse direct solver. The new features include (1) a 3D communication-avoiding algorithm framework that trades off ...
We establish interval arithmetic as a practical tool for certification in numerical algebraic geometry. Our software HomotopyContinuation.jl now has a built-in function certify, which proves the correctness of an isolated nonsingular solution to a square ...