research-article

Intelligent resolution: Integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action

Authors Info & Claims
Published:01 November 2022Publication History
Skip Abstract Section

Abstract

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication transcription complex (RTC) is a multi-domain protein responsible for replicating and transcribing the viral mRNA inside a human cell. Attacking RTC function with pharmaceutical compounds is a pathway to treating COVID-19. Conventional tools, e.g. cryo-electron microscopy and all-atom molecular dynamics (AAMD), do not provide sufficiently high resolution or timescale to capture important dynamics of this molecular machine. Consequently, we develop an innovative workflow that bridges the gap between these resolutions, using mesoscale fluctuating finite element analysis (FFEA) continuum simulations and a hierarchy of AI-methods that continually learn and infer features for maintaining consistency between AAMD and FFEA simulations. We leverage a multi-site distributed workflow manager to orchestrate AI, FFEA, and AAMD jobs, providing optimal resource utilization across HPC centers. Our study provides unprecedented access to study the SARS-CoV-2 RTC machinery, while providing general capability for AI-enabled multi-resolution simulations at scale.

References

  1. Agostini MLPruijssers AJChappell JD, et al. (2019) Small-molecule antiviral β-d-N 4-hydroxycytidine inhibits a proofreading-intact coronavirus with a high genetic barrier to resistance. Journal of Virology 93(24): e01348–19.Google ScholarGoogle Scholar
  2. Alam NHiggins MK (2020) A spike with which to beat COVID-19? Nature Reviews Microbiology 18(8): 414414. DOI: 10.1038/s41579-020-0383-2Google ScholarGoogle Scholar
  3. AlQuraishi M (2019) End-to-end differentiable learning of protein structure. Cell Systems 8(4): 292301. DOI: 10.1016/j.cels.2019.03.006Google ScholarGoogle ScholarCross RefCross Ref
  4. Arantes PRSaha APalermo G (2020) Fighting COVID-19 using molecular dynamics simulations. ACS Central Science 6(10): 16541656. DOI: 10.1021/acscentsci.0c01236Google ScholarGoogle Scholar
  5. Balasubramanian VTreikalis AWeidner O, et al. (2016) Ensemble toolkit: scalable and flexible execution of ensembles of tasks. In: 2016 45th International Conference on Parallel Processing (ICPP). Los Alamitos, CA, USA: IEEE Computer Society, 16-19 August 2016, pp. 458463. DOI: 10.1109/ICPP.2016.59Google ScholarGoogle Scholar
  6. Bárcena MBarnes COBeck M, et al. (2021) Structural biology in the fight against COVID-19. Nature Structural & Molecular Biology 28(1): 27. DOI: 10.1038/s41594-020-00544-8Google ScholarGoogle Scholar
  7. Barrantes FJ (2021) The contribution of biophysics and structural biology to current advances in COVID-19. Annual Review of Biophysics 50(1): 493523. DOI: 10.1146/annurev-biophys-102620-080956Google ScholarGoogle Scholar
  8. Barros EPCasalino LGaieb Z, et al. (2020) The flexibility of ACE2 in the context of SARS-CoV-2 infection. bioRxiv. DOI: 10.1101/2020.09.16.300459Google ScholarGoogle Scholar
  9. Bhowmik DGao SYoung MT, et al. (2018) Deep clustering of protein folding simulations. BMC Bioinformatics 19(18): 484. DOI: 10.1186/s12859-018-2507-5Google ScholarGoogle Scholar
  10. Bowerman SAmbar SRana JB, et al. (2017) Determining atomistic SAXS models of tri-ubiquitin chains from bayesian analysis of accelerated molecular dynamics simulations. Journal of Chemical Theory and Computation 13(6): 24182429. DOI: 10.1021/acs.jctc.7b00059Google ScholarGoogle Scholar
  11. Brace ALee HMa H, et al. (2021) Achieving 100X faster simulations of complex biological phenomena by coupling ML to HPC ensembles. arXiv Preprint arXiv:2104.04797.Google ScholarGoogle Scholar
  12. Bratholm LAChristensen ASHamelryck T, et al. (2015) Bayesian inference of protein structure from chemical shift data. PeerJ 3: e861. DOI: 10.7717/peerj.861Google ScholarGoogle Scholar
  13. Breunig MMKriegel HPNg RT, et al. (2000) LOF: identifying density-based local outliers. In: ACM Sigmod Record. ACM, Vol. 29, pp. 93104.Google ScholarGoogle Scholar
  14. Casalino LDommer ACGaieb Z, et al. (2021) AI-driven multiscale simulations illuminate mechanisms of SARS-CoV-2 spike dynamics. The International Journal of High Performance Computing Applications 35(5): 432451. DOI: 10.1177/10943420211006452Google ScholarGoogle ScholarDigital LibraryDigital Library
  15. Cavalli ASalvatella XDobson CM, et al. (2007) Protein structure determination from NMR chemical shifts. Proceedings of the National Academy of Sciences 104(23): 96159620. DOI: 10.1073/pnas.0610313104Google ScholarGoogle ScholarCross RefCross Ref
  16. Chard RBabuji YLi Z, et al. (2020) funcX: a federated function serving fabric for science. In: Proceedings of the 29th International Symposium on High-Performance Parallel and Distributed Computing. 23 June 2020, pp. 6576. DOI: 10.1145/3369583.3392683Google ScholarGoogle ScholarDigital LibraryDigital Library
  17. Chen JMalone BLlewellyn E, et al. (2020) Structural basis for helicase-polymerase coupling in the SARS-CoV-2 replication-transcription complex. Cell 182(6): 15601573. DOI: 10.1016/j.cell.2020.07.033Google ScholarGoogle Scholar
  18. Cignoni PCallieri MCorsini M, et al. (2008) Meshlab: an open-source mesh processing tool. In: Eurographics Italian Chapter Conference. Salerno, Italy, 2 July 2008, Vol. 2008, pp. 129136.Google ScholarGoogle Scholar
  19. Clyde AGalanie Kneller DW, et al. (2021) High throughput virtual screening and validation of a SARS-CoV-2 main protease non-covalent inhibitor. bioRxiv. DOI: 10.1101/2021.03.27.437323Google ScholarGoogle Scholar
  20. Cruz FAMartinasso M (2019) FirecREST: restful API on cray XC systems. arXiv.Google ScholarGoogle Scholar
  21. De Sancho DGavira JAPérez-Jiménez R (2020) Coarse-grained molecular simulations of the binding of the SARS-CoV-2 spike protein RBD to the ACE2 receptor. bioRxiv. DOI: 10.1101/2020.05.07.083212Google ScholarGoogle Scholar
  22. Dong CSkalak R (1992) Leukocyte deformability: finite element modeling of large viscoelastic deformation. Journal of Theoretical Biology 158(2): 173193. DOI: 10.1016/S0022-5193(05)80716-7Google ScholarGoogle Scholar
  23. Durumeric AEPVoth GA (2019) Adversarial-residual-coarse-graining: Applying machine learning theory to systematic molecular coarse-graining. The Journal of Chemical Physics 151(12): 124110. DOI: 10.1063/1.5097559Google ScholarGoogle ScholarCross RefCross Ref
  24. Earnest TMWatanabe RStone JE, et al. (2017) Challenges of integrating stochastic dynamics and cryo-electron tomograms in whole-cell simulations. The Journal of Physical Chemistry B 121(15): 38713881. DOI: 10.1021/acs.jpcb.7b00672Google ScholarGoogle Scholar
  25. Eastman PSwails JChodera JD, et al. (2017) OpenMM 7: rapid development of high performance algorithms for molecular dynamics. PLoS Computational Biology 13(7): e1005659. DOI: 10.1371/journal.pcbi.1005659Google ScholarGoogle ScholarCross RefCross Ref
  26. Enders BBard DSnavely C, et al. (2020) Cross-facility science with the Superfacility Project at LBNL. In: 2020 IEEE/ACM 2nd Annual Workshop on Extreme-Scale Experiment-in-the-Loop Computing (XLOOP). Los Alamitos, CA, USA: IEEE Computer Society, 12 November 2020, pp. 17. DOI: 10.1109/XLOOP51963.2020.00006Google ScholarGoogle Scholar
  27. Engel BDSchaffer MCuellar LK, et al. (2015) Native architecture of the Chlamydomonas chloroplast revealed by in situ cryo-electron tomography. eLife 4: e04889. DOI: 10.7554/eLife.04889Google ScholarGoogle Scholar
  28. Essmann UPerera LBerkowitz ML, et al. (1995) A smooth particle mesh Ewald method. Journal of Chemical Physics 103: 85778593.Google ScholarGoogle ScholarCross RefCross Ref
  29. Ester MKriegel HPSander J, et al. (1996) A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining (KDD-96). Portland, Oregon, 2–4 August 1996, pp. 226231.Google ScholarGoogle Scholar
  30. Fiorin GKlein MLHénin J (2013) Using collective variables to drive molecular dynamics simulations. Molecular Physics 111(2223): 33453362. DOI: 10.1080/00268976.2013.813594Google ScholarGoogle Scholar
  31. Gao YYan LHuang Y, et al. (2020) Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368(6492): 779782. DOI: 10.1126/science.abb7498Google ScholarGoogle Scholar
  32. Garay PGBarrera EEKlein F, et al. (2021) The SIRAH-CoV-2 initiative: a coarse-grained simulations’ dataset of the SARS-CoV-2 proteome. Frontiers in Medical Technology 3: 644039. DOI: 10.3389/fmedt.2021.644039Google ScholarGoogle Scholar
  33. Geuzaine CRemacle JF (2009) Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities. International Journal for Numerical Methods in Engineering 79(11): 13091331.Google ScholarGoogle ScholarCross RefCross Ref
  34. Grishaev ALlinás M (2005) Protein structure elucidation from minimal NMR data: the CLOUDS approach. In: Nuclear Magnetic Resonance of Biological Macromolecules. Methods in Enzymology. Academic Press, Vol. 394, pp. 261295. DOI: 10.1016/S0076-6879(05)94010-XGoogle ScholarGoogle Scholar
  35. Hanson BSIida SRead DJ, et al. (2021) Continuum mechanical parameterisation of cytoplasmic dynein from atomistic simulation. Methods 185: 3948.Google ScholarGoogle Scholar
  36. Hoseini PZhao LShehu A (2021) Generative deep learning for macromolecular structure and dynamics. Current Opinion in Structural Biology 67: 170177.Google ScholarGoogle Scholar
  37. Humphrey WDalke ASchulten K (1996) VMD – visual molecular dynamics. Journal of Medical Genetics 14(1): 3338. DOI: 10.1016/0263-7855(96)00018-5Google ScholarGoogle Scholar
  38. Husic BECharron NELemm D, et al. (2020) Coarse graining molecular dynamics with graph neural networks. arXiv.Google ScholarGoogle Scholar
  39. Jain AOng SPChen W, et al. (2015) FireWorks: a dynamic workflow system designed for high-throughput applications. Concurrency and Computation: Practice and Experience 27(17): 50375059. DOI: 10.1002/cpe.3505Google ScholarGoogle ScholarDigital LibraryDigital Library
  40. Jumper JEvans RPritzel A, et al. (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596(7873): 583589. DOI: 10.1038/s41586-021-03819-2Google ScholarGoogle ScholarCross RefCross Ref
  41. Kale LAcun BBak S, et al. (2019) The Charm++ Parallel Programming System. DOI: 10.5281/zenodo.3370873Google ScholarGoogle Scholar
  42. Kale L.V.Bhatele A. (Eds.). (2013). Parallel Science and Engineering Applications: The Charm++ Approach (1st ed.). CRC Press. DOI: 10.1201/b16251Google ScholarGoogle Scholar
  43. Kennaway RCoen E (2019) Volumetric finite-element modelling of biological growth. Open Biology 9(5): 190057. DOI: 10.1098/rsob.190057Google ScholarGoogle ScholarCross RefCross Ref
  44. Kim HJung HS (2021) Cryo-EM as a powerful tool for drug discovery: recent structural based studies of SARS-CoV-2. Applied Microscopy 51(1): 17. DOI: 10.1186/s42649-021-00062-xGoogle ScholarGoogle Scholar
  45. Kühlbrandt W (2014) The resolution revolution. Science 343(6178): 14431444. DOI: 10.1126/science.1251652Google ScholarGoogle Scholar
  46. Lee HTurilli MJha S, et al. (2019) DeepDriveMD: deep-learning driven adaptive molecular simulations for protein folding. In: 2019 IEEE/ACM Third Workshop on Deep Learning on Supercomputers (DLS). Denver, CO, USA: IEEE, 17-17 November 2019, pp. 1219.Google ScholarGoogle Scholar
  47. Li ZKovachki NAzizzadenesheli K, et al. (2020) Neural operator: graph kernel network for partial differential equations. arXiv.Google ScholarGoogle Scholar
  48. Lyumkis D (2019) Challenges and opportunities in cryo-EM single-particle analysis. Journal of Biological Chemistry 294(13): 51815197. DOI: 10.1074/jbc.REV118.005602Google ScholarGoogle Scholar
  49. Mahamid JPfeffer SSchaffer M, et al. (2016) Visualizing the molecular sociology at the HeLa cell nuclear periphery. Science 351(6276): 969972. DOI: 10.1126/science.aad8857Google ScholarGoogle Scholar
  50. Merk ABartesaghi ABanerjee S, et al. (2016) Breaking Cryo-EM resolution barriers to facilitate drug discovery. Cell 165(7): 16981707. DOI: 10.1016/j.cell.2016.05.040Google ScholarGoogle Scholar
  51. Merzky ATurilli MMaldonado M, et al. (2018) Using pilot systems to execute many task workloads on supercomputers. arXiv.Google ScholarGoogle Scholar
  52. Minkyung BDiMaio FAnishchenko I, et al. (2021) Accurate prediction of protein structures and interactions using a three-track neural network. Science 373(6557): 871876. DOI: 10.1126/science.abj8754Google ScholarGoogle Scholar
  53. Muratov ENAmaro RAndrade CH, et al. (2021) A critical overview of computational approaches employed for COVID-19 drug discovery. Chemical Society Reviews 50: 91219151. DOI: 10.1039/D0CS01065KGoogle ScholarGoogle Scholar
  54. Noé F (2020) Machine Learning for Molecular Dynamics on Long Timescales. Cham: Springer International Publishing, pp. 331372. DOI: 10.1007/978-3-030-40245-7_16Google ScholarGoogle Scholar
  55. Oliver RCRead DJHarlen OG, et al. (2013) A stochastic finite element model for the dynamics of globular macromolecules. Journal of Computational Physics 239: 147165. DOI: 10.1016/j.jcp.2012.12.027Google ScholarGoogle ScholarDigital LibraryDigital Library
  56. Padhi AKLipsa Rath STripathi T (2021) Accelerating COVID-19 research using molecular dynamics simulation. Journal of Palliative Care 125(32): 90789091. DOI: 10.1021/acs.jpcb.1c04556Google ScholarGoogle Scholar
  57. Pak AJVoth GA (2018) Advances in coarse-grained modeling of macromolecular complexes. Current Opinion in Structural Biology 52: 119126. DOI: 10.1016/j.sbi.2018.11.005Google ScholarGoogle Scholar
  58. Panagiotopoulou OIriarte-Diaz JWilshin S, et al. (2017) In vivo bone strain and finite element modeling of a rhesus macaque mandible during mastication. Zoology 124: 1329. DOI: 10.1016/j.zool.2017.08.010Google ScholarGoogle Scholar
  59. Perry JKAppleby TCBilello JP, et al. (2021) An atomistic model of the coronavirus replication-transcription complex as a hexamer assembled around nsp15. bioRxiv. DOI: 10.1101/2021.06.08.447516Google ScholarGoogle Scholar
  60. Pettersen EFGoddard TDHuang CC, et al. (2021) UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Science 30(1): 7082.Google ScholarGoogle Scholar
  61. Phillips JZheng GKumar S, et al. (2002) NAMD: biomolecular simulation on thousands of processors. In: Proceedings of the IEEE/ACM SC2002 Conference, Technical Paper 277. Baltimore, MD: IEEE Press, 16 November 2002, pp. 118. DOI: 10.1109/SC.2002.10019Google ScholarGoogle Scholar
  62. Phillips JCBraun RWang W, et al. (2005) Scalable molecular dynamics with NAMD. Journal of Computational Chemistry 26: 17811802.Google ScholarGoogle ScholarCross RefCross Ref
  63. Phillips JCHardy DJMaia JDC, et al. (2020) Scalable molecular dynamics on CPU and GPU architectures with NAMD. The Journal of Chemical Physics 153: 044130. DOI: 10.1063/5.0014475Google ScholarGoogle ScholarCross RefCross Ref
  64. Phillips JCStone JESchulten K (2008) Adapting a message-driven parallel application to GPU-accelerated clusters. In: SC ’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing. Piscataway, NJ, USA: IEEE Press, 15 November 2008, pp. 19.Google ScholarGoogle Scholar
  65. Ramanathan ASavol AJLangmead CJ, et al. (2011) Discovering conformational sub-states relevant to protein function. PLoS ONE 6(1): e15827. DOI: 10.1371/journal.pone.0015827Google ScholarGoogle Scholar
  66. Richardson RAHanson BSRead DJ, et al. (2020) Exploring the dynamics of flagellar dynein within the axoneme with Fluctuating Finite Element Analysis. Quarterly Reviews of Biophysics 53, E9. DOI: 10.1017/S0033583520000062Google ScholarGoogle Scholar
  67. Richardson RHanson BRead DHarlen OHarris S. (2020) Exploring the dynamics of flagellar dynein within the axoneme with Fluctuating Finite Element Analysis. Quarterly Reviews of Biophysics, 53, E9, DOI: 10.1017/S0033583520000062Google ScholarGoogle Scholar
  68. Romano MRuggiero ASqueglia F, et al. (2020) A structural view of SARS-CoV-2 RNA replication machinery: RNA synthesis, proofreading and final capping. Cells 9(5): 1267. DOI: 10.3390/cells9051267Google ScholarGoogle Scholar
  69. Salim MUram TChilders JT, et al. (2021) Toward real-time analysis of experimental science workloads on geographically distributed supercomputers. arXiv.Google ScholarGoogle Scholar
  70. Scheres SHW (2012) A bayesian view on Cryo-EM structure determination. Journal of Molecular Biology 415(2): 406418. DOI: 10.1016/j.jmb.2011.11.010Google ScholarGoogle ScholarCross RefCross Ref
  71. Schöberl J (1997) NETGEN an advancing front 2D/3D-mesh generator based on abstract rules. Computing and Visualization in Science 1(1): 4152.Google ScholarGoogle ScholarCross RefCross Ref
  72. Sener MLevy SStone JE, et al. (2021) Multiscale modeling and cinematic visualization of photosynthetic energy conversion processes from electronic to cell scales. Parallel Computing 102: 102698.Google ScholarGoogle ScholarCross RefCross Ref
  73. Shang JWan YLuo C, et al. (2020) Cell entry mechanisms of SARS-CoV-2. Proceedings of the National Academy of Sciences 117(21): 1172711734.Google ScholarGoogle Scholar
  74. Sheahan TPSims ACZhou S, et al. (2020) An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Science Translational Medicine 12: 541.Google ScholarGoogle Scholar
  75. Solernou AHanson BSRichardson RA, et al.(2018) Fluctuating Finite Element Analysis (FFEA): a continuum mechanics software tool for mesoscale simulation of biomolecules. PLoS Computational Biology 14(3): e1005897.Google ScholarGoogle Scholar
  76. Sommer KIzzo RLShepard L, et al. (2017) Design optimization for accurate flow simulations in 3D printed vascular phantoms derived from computed tomography angiography. In: Medical Imaging 2017: Imaging Informatics for Healthcare, Research, and Applications. International Society for Optics and Photonics. Vol. 10138.Google ScholarGoogle Scholar
  77. Stone JEIsralewitz BSchulten K (2013a) Early experiences scaling VMD molecular visualization and analysis jobs on blue waters. In: Extreme Scaling Workshop (XSW). pp. 4350. DOI: 10.1109/XSW.2013.10Google ScholarGoogle ScholarDigital LibraryDigital Library
  78. Stone JEMcGreevy RIsralewitz B, et al. (2014) GPU-accelerated analysis and visualization of large structures solved by molecular dynamics flexible fitting. Faraday Discussions 169: 265283. DOI: 10.1039/C4FD00005FGoogle ScholarGoogle ScholarCross RefCross Ref
  79. Stone JESener MVandivort KL, et al. (2016) Atomic detail visualization of photosynthetic membranes with GPU-accelerated ray tracing. Parallel Computing 55: 1727. DOI: 10.1016/j.parco.2015.10.015Google ScholarGoogle ScholarDigital LibraryDigital Library
  80. Stone JEVandivort KLSchulten K (2013b) GPU-accelerated molecular visualization on petascale supercomputing platforms. In: Proceedings of the 8th International Workshop on Ultrascale Visualization (UltraVis ’13). New York, NY, USA: ACM, 17 November 2013, pp. 18.Google ScholarGoogle Scholar
  81. Sztain TAhn S-HBogetti AT, et al. (2021) A glycan gate controls opening of the SARS-CoV-2 spike protein. Nature Chemistry 13: 963968.Google ScholarGoogle Scholar
  82. Tozzini V (2010) Multiscale modeling of proteins. Accounts of Chemical Research 43(2): 220230. DOI: 10.1021/ar9001476Google ScholarGoogle Scholar
  83. Trabuco LGVilla ESchreiner E, et al. (2009) Molecular dynamics flexible fitting: a practical guide to combine cryo-electron microscopy and X-ray crystallography. Methods 49(2): 174180.Google ScholarGoogle ScholarCross RefCross Ref
  84. Tunyasuvunakool KAdler JWu Z, et al. (2021) Highly accurate protein structure prediction for the human proteome. Nature 596(7873): 590596. DOI: 10.1038/s41586-021-03828-1Google ScholarGoogle Scholar
  85. van der Heijden TWRead DJHarlen OG, et al. (2020) Combined force-torque spectroscopy of proteins by means of multiscale molecular simulation. Biophysical Journal 119(11): 22402250.Google ScholarGoogle Scholar
  86. Vanommeslaeghe KHatcher EAcharya C, et al. (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry 31(4): 671690.Google ScholarGoogle Scholar
  87. Vant JWLahey SLJana K, et al. (2020) Flexible fitting of small molecules into electron microscopy maps using molecular dynamics simulations with neural network potentials. Journal of Chemical Information and Modeling 60(5): 25912604.Google ScholarGoogle Scholar
  88. Villa ELasker K (2014) Finding the right fit: chiseling structures out of cryo-electron microscopy maps. Current Opinion in Structural Biology 25: 118125. DOI: 10.1016/j.sbi.2014.04.001Google ScholarGoogle Scholar
  89. Walpole JPapin JAPeirce SM (2013) Multiscale computational models of complex biological systems. Annual Review of Biomedical Engineering 15(1): 137154. DOI: 10.1146/annurev-bioeng-071811-150104Google ScholarGoogle Scholar
  90. Wang QWu JWang H, et al. (2020) Structural basis for RNA replication by the SARS-CoV-2 polymerase. Cell 182(2): 417428.Google ScholarGoogle Scholar
  91. Wells DBAbramkina VAksimentiev A (2007) Exploring transmembrane transport through α-hemolysin with grid-steered molecular dynamics. The Journal of Chemical Physics 127(12): 09B619.Google ScholarGoogle Scholar
  92. Wu APeng YHuang B, et al. (2020) Genome composition and divergence of the novel coronavirus (2019-nCoV) originating in China. Cell Host & Microbe 27(3): 325328.Google ScholarGoogle Scholar
  93. Yan LGe JZheng L, et al. (2021a) Cryo-EM structure of an extended SARS-CoV-2 replication and transcription complex reveals an intermediate state in cap synthesis. Cell 184(1): 184193. DOI: 10.1016/j.cell.2020.11.016Google ScholarGoogle Scholar
  94. Yan LYang YLi M, et al. (2021b) Coupling of N7-methyltransferase and 3-5 exoribonuclease with SARS-CoV-2 polymerase reveals mechanisms for capping and proofreading. Cell 184(13): 34743485.Google ScholarGoogle Scholar
  95. Yan LZhang YGe J, et al. (2020) Architecture of a SARS-CoV-2 mini replication and transcription complex. Nature Communications 11(1): 5874. DOI: 10.1038/s41467-020-19770-1Google ScholarGoogle Scholar
  96. Yu APak AJHe P, et al. (2021) A multiscale coarse-grained model of the SARS-CoV-2 virion. Biophysical Journal 120(6): 10971104. DOI: 10.1016/j.bpj.2020.10.048Google ScholarGoogle ScholarCross RefCross Ref
  97. Zhang QXiang RHuo S, et al. (2021) Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduction and Targeted Therapy 6(1): 119.Google ScholarGoogle Scholar
  98. Zhou HX (2014) Theoretical frameworks for multiscale modeling and simulation. Current Opinion in Structural Biology 25: 6776. DOI: 10.1016/j.sbi.2014.01.004Google ScholarGoogle ScholarCross RefCross Ref
  99. Zimmerman MIPorter JRWard MD, et al. (2020) SARS-CoV-2 simulations go exascale to capture spike opening and reveal cryptic pockets across the proteome. bioRxiv.Google ScholarGoogle Scholar

Index Terms

(auto-classified)
  1. Intelligent resolution: Integrating Cryo-EM with AI-driven multi-resolution simulations to observe the severe acute respiratory syndrome coronavirus-2 replication-transcription machinery in action

      Comments

      Login options

      Check if you have access through your login credentials or your institution to get full access on this article.

      Sign in

      Full Access

      • Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0

        Other Metrics

      About Cookies On This Site

      We use cookies to ensure that we give you the best experience on our website.

      Learn more

      Got it!