ABSTRACT
Function-as-a-Service (FaaS) is one of the most promising directions for the future of cloud services, and serverless functions have immediately become a new middleware for building scalable and cost-efficient microservices and appli cations. However, the quickly moving technology hinders reproducibility, and the lack of a standardized benchmarking suite leads to ad-hoc solutions and microbenchmarks being used in serverless research, further complicating meta-analysis and comparison of research solutions. To address this challenge, we propose the Serverless Benchmark Suite: the first benchmark for FaaS computing that systematically covers a wide spectrum of cloud resources and applications. Our benchmark consists of the specification of representative workloads, the accompanying implementation and evaluation infrastructure, and the evaluation methodology that facilitates reproducibility and enables interpretability. We demonstrate that the abstract model of a FaaS execution environment ensures the applicability of our benchmark to multiple commercial providers such as AWS, Azure, and Google Cloud. Our work facilities experimental evaluation of serverless systems, and delivers a standardized, reliable and evolving evaluation methodology of performance, efficiency, scalability and reliability of middleware FaaS platforms.
- 2014. AWS Lambda. https://aws.amazon.com/lambda/. Accessed: 2020-01-20.Google Scholar
- 2016a. Azure: Bandwidth Pricing. https://azure.microsoft.com/en-us/pricing/details/bandwidth/. Accessed: 2020-08-20.Google Scholar
- 2016b. Azure Functions. https://azure.microsoft.com/en-us/services/functions/. Accessed: 2020-01-20.Google Scholar
- 2016. IBM Cloud Functions. https://cloud.ibm.com/functions/. Accessed: 2020-01-20.Google Scholar
- 2017. Google Cloud Functions. https://cloud.google.com/functions/. Accessed: 2020-01-20.Google Scholar
- 2018. Firecracker. https://github.com/firecracker-microvm/firecracker. Accessed: 2020-01-20.Google Scholar
- 2019. DNAvisualization.org. https://github.com/Benjamin-Lee/DNAvisualization.org. Accessed: 2020-01-20.Google Scholar
- 2019. MinIO Object Storage. min.io. Accessed: 2020-01-20.Google Scholar
- 2019. <i>SLURM Generic Resource (GRES) Scheduling</i>. Accessed: 2020-01-20.Google Scholar
- 2020. AWS API Pricing. https://aws.amazon.com/api-gateway/pricing/. Accessed: 2020-08-20.Google Scholar
- 2020. AWS Lambda Limits. https://docs.aws.amazon.com/lambda/latest/dg/limits.html. Accessed: 2020-01-20.Google Scholar
- 2020. Azure Functions scale and hosting. https://docs.microsoft.com/en-us/azure/azure-functions/functions-scale. Accessed: 2020-01-20.Google Scholar
- 2020a. Faasdom. https://github.com/faas-benchmarking/faasdom. Accessed: 2020-08-01.Google Scholar
- 2020b. FaaSTest. https://github.com/nuweba/faasbenchmark. Accessed: 2020-08-01.Google Scholar
- 2020a. Google Cloud Functions Pricing. https://cloud.google.com/functions/pricing. Accessed: 2020-08-20.Google Scholar
- 2020b. Google Cloud Functions Quotas. https://cloud.google.com/functions/quotas. Accessed: 2020-08-20.Google Scholar
- 2020. nuclio. https://nuclio.io/. Accessed: 2020-01-20.Google Scholar
- 2020. Serverless Framework. https://github.com/serverless/serverless. Accessed: 2020-08-01.Google Scholar
- 2020. Standard Performance Evaluation Corporation (SPEC) Benchmarks. https://www.spec.org/benchmarks.html. Accessed: 2020-08-01.Google Scholar
- Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND: Towards High-Performance Serverless Computing. In <i>Proceedings of the 2018 USENIX Conference on Usenix Annual Technical Conference</i> (Boston, MA, USA) <i>(USENIX ATC '18)</i>. USENIX Association, USA, 923–935.Google Scholar
- Lixiang Ao, Liz Izhikevich, Geoffrey M. Voelker, and George Porter. 2018. Sprocket: A Serverless Video Processing Framework. In <i>Proceedings of the ACM Symposium on Cloud Computing</i> (Carlsbad, CA, USA) <i>(SoCC '18)</i>. Association for Computing Machinery, New York, NY, USA, 263–274. Google Scholar
Digital Library
- Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy H. Katz, Andrew Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, and Matei Zaharia. 2009. <i>Above the Clouds: A Berkeley View of Cloud Computing</i>. Technical Report. EECS Department, University of California, Berkeley.Google Scholar
- Timon Back and Vasilios Andrikopoulos. 2018. Using a Microbenchmark to Compare Function as a Service Solutions. In <i>Service-Oriented and Cloud Computing</i>. Springer International Publishing, 146–160. Google Scholar
Digital Library
- Daniel Barcelona-Pons, Marc Sánchez-Artigas, Gerard París, Pierre Sutra, and Pedro García-López. 2019. On the FaaS Track: Building Stateful Distributed Applications with Serverless Architectures. In <i>Proceedings of the 20th International Middleware Conference</i> (Davis, CA, USA) <i>(Middleware '19)</i>. Association for Computing Machinery, New York, NY, USA, 41–54. Google Scholar
Digital Library
- Scott Beamer, Krste Asanović, and David Patterson. 2013. Direction-optimizing breadth-first search. <i>Scientific Programming</i> 21, 3-4 (2013), 137–148.Google Scholar
- Scott Beamer, Krste Asanović, and David Patterson. 2015. The GAP benchmark suite. <i>arXiv preprint arXiv:1508.03619</i> (2015).Google Scholar
- Tal Ben-Nun, Maciej Besta, Simon Huber, Alexandros Nikolaos Ziogas, Daniel Peter, and Torsten Hoefler. 2019. A modular benchmarking infrastructure for high-performance and reproducible deep learning. In <i>2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)</i>. IEEE, 66–77.Google Scholar
- Pavel Berkhin. 2005. A survey on PageRank computing. <i>Internet mathematics</i> 2, 1 (2005), 73–120.Google Scholar
- Maciej Besta et al. 2019a. Slim Graph: Practical Lossy Graph Compression for Approximate Graph Processing, Storage, and Analytics. (2019).Google Scholar
- Maciej Besta, Armon Carigiet, Kacper Janda, Zur Vonarburg-Shmaria, Lukas Gianinazzi, and Torsten Hoefler. 2020. High-performance parallel graph coloring with strong guarantees on work, depth, and quality. In <i>Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis</i>. 1–17.Google Scholar
- Maciej Besta, Marc Fischer, Tal Ben-Nun, Johannes De Fine Licht, and Torsten Hoefler. 2019b. Substream-Centric Maximum Matchings on FPGA. In <i>ACM/SIGDA FPGA</i>. 152–161.Google Scholar
- Maciej Besta and Torsten Hoefler. 2015. Accelerating irregular computations with hardware transactional memory and active messages. In <i>ACM HPDC</i>.Google Scholar
- Maciej Besta, Florian Marending, Edgar Solomonik, and Torsten Hoefler. 2017a. Slimsell: A vectorizable graph representation for breadth-first search. In <i>IEEE IPDPS</i>. 32–41.Google Scholar
- Maciej Besta, Emanuel Peter, Robert Gerstenberger, Marc Fischer, Michał Podstawski, Claude Barthels, Gustavo Alonso, and Torsten Hoefler. 2019c. Demystifying Graph Databases: Analysis and Taxonomy of Data Organization, System Designs, and Graph Queries. <i>arXiv preprint arXiv:1910.09017</i> (2019).Google Scholar
- Maciej Besta, Michał Podstawski, Linus Groner, Edgar Solomonik, and Torsten Hoefler. 2017b. To push or to pull: On reducing communication and synchronization in graph computations. In <i>Proceedings of the 26th International Symposium on High-Performance Parallel and Distributed Computing</i>. 93–104.Google Scholar
- Maciej Besta, Dimitri Stanojevic, Tijana Zivic, Jagpreet Singh, Maurice Hoerold, and Torsten Hoefler. 2018. Log (graph): a near-optimal high-performance graph representation.. In <i>PACT</i>. 7–1.Google Scholar
- Carsten Binnig, Donald Kossmann, Tim Kraska, and Simon Loesing. 2009. How is the Weather Tomorrow?: Towards a Benchmark for the Cloud. In <i>Proceedings of the Second International Workshop on Testing Database Systems</i> (Providence, Rhode Island) <i>(DBTest '09)</i>. ACM, New York, NY, USA, Article 9, 6 pages. Google Scholar
Digital Library
- Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. 2006. The DaCapo Benchmarks: Java Benchmarking Development and Analysis. <i>SIGPLAN Not.</i> 41, 10 (Oct. 2006), 169–190. 0362-1340 Google Scholar
Digital Library
- Jean-Yves Le Boudec. 2011. <i>Performance Evaluation of Computer and Communication Systems</i>. EFPL Press.Google Scholar
- Ulrik Brandes and Christian Pich. 2007. Centrality estimation in large networks. <i>International Journal of Bifurcation and Chaos</i> 17, 07 (2007), 2303–2318.Google Scholar
- Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and Randy Katz. 2019. Cirrus: A Serverless Framework for End-to-End ML Workflows. In <i>Proceedings of the ACM Symposium on Cloud Computing</i> (Santa Cruz, CA, USA) <i>(SoCC '19)</i>. Association for Computing Machinery, New York, NY, USA, 13–24. Google Scholar
Digital Library
- Anirban Das, Stacy Patterson, and Mike Wittie. 2018. EdgeBench: Benchmarking Edge Computing Platforms. In <i>2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion)</i>. IEEE. Google Scholar
Cross Ref
- Jack J Dongarra, Hans W Meuer, Erich Strohmaier, et al. 1997. TOP500 supercomputer sites. <i>Supercomputer</i> 13 (1997), 89–111.Google Scholar
- L. Feng, P. Kudva, D. Da Silva, and J. Hu. 2018. Exploring Serverless Computing for Neural Network Training. In <i>2018 IEEE 11th International Conference on Cloud Computing (CLOUD)</i>. 334–341. 2159-6190 Google Scholar
Cross Ref
- Enno Folkerts, Alexander Alexandrov, Kai Sachs, Alexandru Iosup, Volker Markl, and Cafer Tosun. 2013. Benchmarking in the Cloud: What It Should, Can, and Cannot Be. In <i>Selected Topics in Performance Evaluation and Benchmarking</i>, Raghunath Nambiar and Meikel Poess (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 173–188.Google Scholar
- Lester Randolph Ford and Delbert R Fulkerson. 2009. Maximal flow through a network. In <i>Classic papers in combinatorics</i>. Springer, 243–248.Google Scholar
- Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee, Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Transient Functional Containers. In <i>2019 USENIX Annual Technical Conference (USENIX ATC 19)</i>. USENIX Association, Renton, WA, 475–488. https://www.usenix.org/conference/atc19/presentation/fouladiGoogle Scholar
- Sadjad Fouladi, Riad S. Wahby, Brennan Shacklett, Karthikeyan Vasuki Balasubramaniam, William Zeng, Rahul Bhalerao, Anirudh Sivaraman, George Porter, and Keith Winstein. 2017. Encoding, Fast and Slow: Low-Latency Video Processing Using Thousands of Tiny Threads. In <i>Proceedings of the 14th USENIX Conference on Networked Systems Design and Implementation</i> (Boston, MA, USA) <i>(NSDI'17)</i>. USENIX Association, USA, 363–376.Google Scholar
Digital Library
- Yu Gan, Brendon Jackson, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris Colen, Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky, Yanqi Zhang, Mateo Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, Christina Delimitrou, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu, and Brian Ritchken. 2019a. An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems. In <i>Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems - ASPLOS 19</i>. ACM Press. Google Scholar
Digital Library
- Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, and et al. 2019b. An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems. In <i>Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems</i> (Providence, RI, USA) <i>(ASPLOS ’19)</i>. Association for Computing Machinery, New York, NY, USA, 3–18. Google Scholar
Digital Library
- Lukas Gianinazzi, Pavel Kalvoda, Alessandro De Palma, Maciej Besta, and Torsten Hoefler. 2018. Communication-avoiding parallel minimum cuts and connected components. In <i>ACM SIGPLAN Notices</i>, Vol. 53. ACM, 219–232.Google Scholar
- Oleksandr Grygorash, Yan Zhou, and Zach Jorgensen. 2006. Minimum spanning tree based clustering algorithms. In <i>2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06)</i>. IEEE, 73–81.Google Scholar
- Joseph M. Hellerstein, Jose M. Faleiro, Joseph E. Gonzalez, Johann Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang Wu. 2018. Serverless Computing: One Step Forward, Two Steps Back. <i>CoRR</i> abs/1812.03651 (2018). [arxiv]1812.03651 http://arxiv.org/abs/1812.03651Google Scholar
- Torsten Hoefler and Roberto Belli. 2015a. Scientific Benchmarking of Parallel Computing Systems. ACM, 73:1–73:12. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (SC15).Google Scholar
- Torsten Hoefler and Roberto Belli. 2015b. Scientific benchmarking of parallel computing systems: twelve ways to tell the masses when reporting performance results. In <i>Proceedings of the international conference for high performance computing, networking, storage and analysis</i>. 1–12.Google Scholar
- Torsten Hoefler and Roberto Belli. 2015c. Scientific Benchmarking of Parallel Computing Systems: Twelve Ways to Tell the Masses When Reporting Performance Results. In <i>Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis</i> (Austin, Texas) <i>(SC '15)</i>. Association for Computing Machinery, New York, NY, USA, Article 73, 12 pages. Google Scholar
Digital Library
- T. Hoefler, T. Schneider, and A. Lumsdaine. 2008. Accurately measuring collective operations at massive scale. In <i>2008 IEEE International Symposium on Parallel and Distributed Processing</i>. 1–8.Google Scholar
- Alexandru Iosup, Tim Hegeman, Wing Lung Ngai, Stijn Heldens, Arnau Prat-Pérez, Thomas Manhardto, Hassan Chafio, Mihai Capotă, Narayanan Sundaram, Michael Anderson, et al. 2016. LDBC Graphalytics: A benchmark for large-scale graph analysis on parallel and distributed platforms. <i>Proceedings of the VLDB Endowment</i> 9, 13 (2016), 1317–1328.Google Scholar
- V. Ishakian, V. Muthusamy, and A. Slominski. 2018. Serving Deep Learning Models in a Serverless Platform. In <i>2018 IEEE International Conference on Cloud Engineering (IC2E)</i>. 257–262. null Google Scholar
Cross Ref
- Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-che Tsai, Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Jayant Yadwadkar, Joseph E. Gonzalez, Raluca Ada Popa, Ion Stoica, and David A. Patterson. 2019. Cloud Programming Simplified: A Berkeley View on Serverless Computing. <i>CoRR</i> abs/1902.03383 (2019). [arxiv]1902.03383 http://arxiv.org/abs/1902.03383Google Scholar
- Eric Jonas, Shivaram Venkataraman, Ion Stoica, and Benjamin Recht. 2017. Occupy the Cloud: Distributed Computing for the 99%. <i>CoRR</i> abs/1702.04024 (2017). [arxiv]1702.04024 http://arxiv.org/abs/1702.04024Google Scholar
Digital Library
- Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy Ranganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015. Profiling a Warehouse-Scale Computer. <i>SIGARCH Comput. Archit. News</i> 43, 3S (June 2015), 158–169. 0163-5964 Google Scholar
Digital Library
- N. Kaviani and M. Maximilien. 2018. CF Serverless: Attempts at a Benchmark for Serverless Computing. https://docs.google.com/document/d/1e7xTz1P9aPpb0CFZucAAI16Rzef7PWSPLN71pNDa5jg. Accessed: 2020-01-20.Google Scholar
- Jeongchul Kim and Kyungyong Lee. 2019a. FunctionBench: A Suite of Workloads for Serverless Cloud Function Service. In <i>2019 IEEE 12th International Conference on Cloud Computing (CLOUD)</i>. IEEE. Google Scholar
Cross Ref
- Jeongchul Kim and Kyungyong Lee. 2019b. Practical Cloud Workloads for Serverless FaaS. In <i>Proceedings of the ACM Symposium on Cloud Computing - SoCC 19</i>. ACM Press. Google Scholar
Digital Library
- Ana Klimovic, Yawen Wang, Christos Kozyrakis, Patrick Stuedi, Jonas Pfefferle, and Animesh Trivedi. 2018a. Understanding Ephemeral Storage for Serverless Analytics. In <i>2018 USENIX Annual Technical Conference (USENIX ATC 18)</i>. USENIX Association, Boston, MA, 789–794. https://www.usenix.org/conference/atc18/presentation/klimovic-serverlessGoogle Scholar
- Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle, and Christos Kozyrakis. 2018b. Pocket: Elastic Ephemeral Storage for Serverless Analytics. In <i>Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation</i> (Carlsbad, CA, USA) <i>(OSDI'18)</i>. USENIX Association, USA, 427–444.Google Scholar
- Benjamin D Lee. 2018. Squiggle: a user-friendly two-dimensional DNA sequence visualization tool. <i>Bioinformatics</i> (sep 2018). Google Scholar
Cross Ref
- Benjamin D Lee, Michael A Timony, and Pablo Ruiz. 2019. DNAvisualization.org: a serverless web tool for DNA sequence visualization. <i>Nucleic Acids Research</i> 47, W1 (06 2019), W20–W25. 0305-1048 https://academic.oup.com/nar/article-pdf/47/W1/W20/28879727/gkz404.pdf Google Scholar
Cross Ref
- Pedro García López, Marc Sánchez Artigas, Simon Shillaker, Peter R. Pietzuch, David Breitgand, Gil Vernik, Pierre Sutra, Tristan Tarrant, and Ana Juan Ferrer. 2019. ServerMix: Tradeoffs and Challenges of Serverless Data Analytics. <i>CoRR</i> abs/1907.11465 (2019). [arxiv]1907.11465 http://arxiv.org/abs/1907.11465Google Scholar
- Andrew Lumsdaine, Douglas Gregor, Bruce Hendrickson, and Jonathan Berry. 2007. Challenges in parallel graph processing. <i>Parallel Processing Letters</i> 17, 01 (2007), 5–20.Google Scholar
- Pascal Maissen, Pascal Felber, Peter Kropf, and Valerio Schiavoni. 2020. FaaSdom. <i>Proceedings of the 14th ACM International Conference on Distributed and Event-based Systems</i> (Jul 2020). Google Scholar
Digital Library
- Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017. My VM is Lighter (and Safer) than Your Container. In <i>Proceedings of the 26th Symposium on Operating Systems Principles</i> (Shanghai, China) <i>(SOSP ’17)</i>. Association for Computing Machinery, New York, NY, USA, 218–233. Google Scholar
Digital Library
- Johannes Manner, Martin EndreB, Tobias Heckel, and Guido Wirtz. 2018a. Cold Start Influencing Factors in Function as a Service. <i>2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion)</i> (2018), 181–188.Google Scholar
- Johannes Manner, Martin Endreß, Tobias Heckel, and Guido Wirtz. 2018b. Cold start influencing factors in function as a service. In <i>2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion)</i>. IEEE, 181–188.Google Scholar
- Ingo Müller, Renato Marroquin, and Gustavo Alonso. 2019. Lambada: Interactive Data Analytics on Cold Data using Serverless Cloud Infrastructure. <i>ArXiv</i> abs/1912.00937 (2019).Google Scholar
- Richard C Murphy, Kyle B Wheeler, Brian W Barrett, and James A Ang. 2010. Introducing the graph 500. <i>Cray Users Group (CUG)</i> 19 (2010), 45–74.Google Scholar
- Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. <i>The pagerank citation ranking: Bringing order to the web.</i> Technical Report. Stanford InfoLab.Google Scholar
- Christos H Papadimitriou and Kenneth Steiglitz. 1998. <i>Combinatorial optimization: algorithms and complexity</i>. Courier Corporation.Google Scholar
- Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In <i>Advances in Neural Information Processing Systems 32</i>, H. Wallach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdfGoogle Scholar
Digital Library
- Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling, Fast and Slow: Scalable Analytics on Serverless Infrastructure. In <i>16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19)</i>. USENIX Association, Boston, MA, 193–206. https://www.usenix.org/conference/nsdi19/presentation/puGoogle Scholar
- Vijay Janapa Reddi, Christine Cheng, David Kanter, Peter Mattson, Guenther Schmuelling, Carole-Jean Wu, Brian Anderson, Maximilien Breughe, Mark Charlebois, William Chou, Ramesh Chukka, Cody Coleman, Sam Davis, Pan Deng, Greg Diamos, Jared Duke, Dave Fick, J. Scott Gardner, Itay Hubara, Sachin Idgunji, Thomas B. Jablin, Jeff Jiao, Tom St. John, Pankaj Kanwar, David Lee, Jeffery Liao, Anton Lokhmotov, Francisco Massa, Peng Meng, Paulius Micikevicius, Colin Osborne, Gennady Pekhimenko, Arun Tejusve Raghunath Rajan, Dilip Sequeira, Ashish Sirasao, Fei Sun, Hanlin Tang, Michael Thomson, Frank Wei, Ephrem Wu, Lingjie Xu, Koichi Yamada, Bing Yu, George Yuan, Aaron Zhong, Peizhao Zhang, and Yuchen Zhou. 2019. MLPerf Inference Benchmark. [arxiv]1911.02549 [cs.LG]Google Scholar
- Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar, Renzo Angles, Walid Aref, Marcelo Arenas, Maciej Besta, Peter A Boncz, et al. 2020. The Future is Big Graphs! A Community View on Graph Processing Systems. <i>arXiv preprint arXiv:2012.06171</i> (2020).Google Scholar
- Hermann Schweizer, Maciej Besta, and Torsten Hoefler. 2015. Evaluating the cost of atomic operations on modern architectures. In <i>IEEE PACT</i>. 445–456.Google Scholar
- Mohammad Shahrad, Jonathan Balkind, and David Wentzlaff. 2019. Architectural Implications of Function-as-a-Service Computing. In <i>Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture</i> (Columbus, OH, USA) <i>(MICRO '52)</i>. Association for Computing Machinery, New York, NY, USA, 1063–1075. Google Scholar
Digital Library
- Vaishaal Shankar, Karl Krauth, Qifan Pu, Eric Jonas, Shivaram Venkataraman, Ion Stoica, Benjamin Recht, and Jonathan Ragan-Kelley. 2018. numpywren: serverless linear algebra. <i>CoRR</i> abs/1810.09679 (2018). [arxiv]1810.09679 http://arxiv.org/abs/1810.09679Google Scholar
- Edgar Solomonik, Maciej Besta, Flavio Vella, and Torsten Hoefler. 2017. Scaling betweenness centrality using communication-efficient sparse matrix multiplication. In <i>ACM/IEEE Supercomputing</i>. 47.Google Scholar
- N. Somu, N. Daw, U. Bellur, and P. Kulkarni. 2020. PanOpticon: A Comprehensive Benchmarking Tool for Serverless Applications. In <i>2020 International Conference on COMmunication Systems NETworkS (COMSNETS)</i>. 144–151.Google Scholar
- Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann Schleier-Smith, Joseph E. Gonzalez, Joseph M. Hellerstein, and Alexey Tumanov. 2020. Cloudburst: Stateful Functions-as-a-Service. <i>Proc. VLDB Endow.</i> 13, 12 (July 2020), 2438–2452. 2150-8097 Google Scholar
Digital Library
- Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. 2010. Collecting Performance Data with PAPI-C. In <i>Tools for High Performance Computing 2009</i>, Matthias S. Müller, Michael M. Resch, Alexander Schulz, and Wolfgang E. Nagel (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 157–173.Google Scholar
- Jóakim v. Kistowski, Jeremy A. Arnold, Karl Huppler, Klaus-Dieter Lange, John L. Henning, and Paul Cao. 2015. How to Build a Benchmark. In <i>Proceedings of the 6th ACM/SPEC International Conference on Performance Engineering</i> (Austin, Texas, USA) <i>(ICPE '15)</i>. ACM, New York, NY, USA, 333–336. Google Scholar
Digital Library
- Erwin van Eyk, Alexandru Iosup, Cristina L. Abad, Johannes Grohmann, and Simon Eismann. 2018. A SPEC RG Cloud Groups Vision on the Performance Challenges of FaaS Cloud Architectures. In <i>Companion of the 2018 ACM/SPEC International Conference on Performance Engineering - ICPE 18</i>. ACM Press. Google Scholar
Digital Library
- Jeffrey S Vetter, Ron Brightwell, Maya Gokhale, Pat McCormick, Rob Ross, John Shalf, Katie Antypas, David Donofrio, Travis Humble, Catherine Schuman, et al. 2019. <i>Extreme Heterogeneity 2018-Productive Computational Science in the Era of Extreme Heterogeneity: Report for DOE ASCR Workshop on Extreme Heterogeneity</i>. Technical Report. Lawrence Berkeley National Lab.(LBNL), Berkeley, CA (United States).Google Scholar
- Liang Wang, Mengyuan Li, Yinqian Zhang, Thomas Ristenpart, and Michael Swift. 2018. Peeking behind the Curtains of Serverless Platforms. In <i>Proceedings of the 2018 USENIX Conference on Usenix Annual Technical Conference</i> (Boston, MA, USA) <i>(USENIX ATC '18)</i>. USENIX Association, USA, 133–145.Google Scholar
- Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu, Pingchao Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing Serverless Platforms with Serverlessbench. In <i>Proceedings of the 11th ACM Symposium on Cloud Computing</i> (Virtual Event, USA) <i>(SoCC '20)</i>. Association for Computing Machinery, New York, NY, USA, 30–44. Google Scholar
Digital Library
- Miao Zhang, Yifei Zhu, Cong Zhang, and Jiangchuan Liu. 2019. Video Processing with Serverless Computing: A Measurement Study. In <i>Proceedings of the 29th ACM Workshop on Network and Operating Systems Support for Digital Audio and Video</i> (Amherst, Massachusetts) <i>(NOSSDAV ’19)</i>. Association for Computing Machinery, New York, NY, USA, 61–66. Google Scholar
Digital Library
- Wen Zhang, Vivian Fang, Aurojit Panda, and Scott Shenker. 2020. Kappa: A Programming Framework for Serverless Computing. In <i>Proceedings of the 11th ACM Symposium on Cloud Computing</i> (Virtual Event, USA) <i>(SoCC '20)</i>. Association for Computing Machinery, New York, NY, USA, 328–343. Google Scholar
Digital Library
- Y. Zhu, D. Richins, M. Halpern, and V. J. Reddi. 2015. Microarchitectural implications of event-driven server-side web applications. In <i>2015 48th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)</i>. 762–774. Google Scholar
Digital Library
Index Terms
SeBS: a serverless benchmark suite for function-as-a-service computing
Comments