Abstract
We propose GraphMineSuite (GMS): the first benchmarking suite for graph mining that facilitates evaluating and constructing high-performance graph mining algorithms. First, GMS comes with a benchmark specification based on extensive literature review, prescribing representative problems, algorithms, and datasets. Second, GMS offers a carefully designed software platform for seamless testing of different fine-grained elements of graph mining algorithms, such as graph representations or algorithm subroutines. The platform includes parallel implementations of more than 40 considered baselines, and it facilitates developing complex and fast mining algorithms. High modularity is possible by harnessing set algebra operations such as set intersection and difference, which enables breaking complex graph mining algorithms into simple building blocks that can be separately experimented with. GMS is supported with a broad concurrency analysis for portability in performance insights, and a novel performance metric to assess the throughput of graph mining algorithms, enabling more insightful evaluation. As use cases, we harness GMS to rapidly redesign and accelerate state-of-the-art baselines of core graph mining problems: degeneracy reordering (by >2X), maximal clique listing (by >9×), k-clique listing (by up to 1.1×), and subgraph isomorphism (by 2.5×), also obtaining better theoretical performance bounds.
- C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré. Emptyheaded: A relational engine for graph processing. ACM Transactions on Database Systems (TODS), 42(4):1--44, 2017. Google ScholarDigital Library
- M. Adedoyin-Olowe, M. M. Gaber, and F. Stahl. A survey of data mining techniques for social media analysis. arXiv preprint arXiv:1312.4617, 2013.Google Scholar
- C. C. Aggarwal and H. Wang. Graph data management and mining: A survey of algorithms and applications. In Managing and mining graph data, pages 13--68. Springer, 2010.Google ScholarCross Ref
- C. C. Aggarwal and H. Wang. A survey of clustering algorithms for graph data. In Managing and mining graph data, pages 275--301. Springer, 2010. Google ScholarDigital Library
- C. C. Aggarwal, H. Wang, et al. Managing and mining graph data, volume 40. Springer, 2010. Google ScholarDigital Library
- M. Ahmad, F. Hijaz, Q. Shi, and O. Khan. Crono: A benchmark suite for multithreaded graph algorithms executing on futuristic multicores. In 2015 IEEE International Symposium on Workload Characterization, pages 44--55. IEEE, 2015. Google ScholarDigital Library
- M. Al Hasan et al. Link prediction using supervised learning. In SDM, 2006.Google Scholar
- M. Al Hasan and M. J. Zaki. A survey of link prediction in social networks. In Social network data analytics, pages 243--275. Springer, 2011.Google ScholarCross Ref
- K. Ammar and M. T. Özsu. Wgb: Towards a universal graph benchmark. In Advancing Big Data Benchmarks, pages 58--72. Springer, 2013.Google Scholar
- T. G. Armstrong, V. Ponnekanti, D. Borthakur, and M. Callaghan. Linkbench: a database benchmark based on the facebook social graph. In ACM SIGMOD, pages 1185--1196, 2013. Google ScholarDigital Library
- D. A. Bader and K. Madduri. Design and implementation of the hpcs graph analysis benchmark on symmetric multiprocessors. In International Conference on High-Performance Computing, pages 465--476. Springer, 2005. Google ScholarDigital Library
- S. Bassini, M. Danelutto, and P. Dazzi. Parallel Computing is Everywhere, volume 32. IOS Press, 2018. Google ScholarDigital Library
- S. Beamer, K. Asanović, and D. Patterson. The gap benchmark suite. arXiv preprint arXiv:1508.03619, 2015.Google Scholar
- P. Berkhin. A survey of clustering data mining techniques. In Grouping multidimensional data, pages 25--71. Springer, 2006.Google ScholarCross Ref
- M. Besta, A. Carigiet, Z. Vonarburg-Shmaria, K. Janda, L. Gianinazzi, and T. Hoefler. High-performance parallel graph coloring with strong guarantees on work, depth, and quality. In ACM/IEEE Supercomputing, 2020. Google ScholarDigital Library
- M. Besta and T. Hoefler. Survey and taxonomy of lossless graph compression and space-efficient graph representations. arXiv preprint arXiv:1806.01799, 2018.Google Scholar
- M. Besta, D. Stanojevic, T. Zivic, J. Singh, M. Hoerold, and T. Hoefler. Log (graph): a near-optimal high-performance graph representation. In Proceedings of the 27th International Conference on Parallel Architectures and Compilation Techniques, page 7. ACM, 2018. Google ScholarDigital Library
- G. Bilardi and A. Pietracaprina. Models of Computation, Theoretical, pages 1150--1158. Springer US, Boston, MA, 2011.Google Scholar
- G. E. Blelloch. Problem based benchmark suite, 2011.Google Scholar
- G. E. Blelloch and B. M. Maggs. Parallel Algorithms, page 25. Chapman & Hall/CRC, 2 edition, 2010. Google ScholarDigital Library
- V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10):P10008, 2008.Google Scholar
- P. Boldi and S. Vigna. The WebGraph framework I: Compression techniques. In World Wide Web Conf. (WWW), pages 595--601, 2004. Google ScholarDigital Library
- P. Boncz. LDBC: benchmarks for graph and RDF data management. In IDEAS, 2013. Google ScholarDigital Library
- C. Bron and J. Kerbosch. Algorithm 457: finding all cliques of an undirected graph. CACM, 1973. Google ScholarDigital Library
- M. Burtscher, R. Nasre, and K. Pingali. A quantitative study of irregular programs on gpus. In 2012 IEEE International Symposium on Workload Characterization (IISWC), pages 141--151. IEEE, 2012. Google ScholarDigital Library
- V. Carletti et al. Introducing vf3: A new algorithm for subgraph isomorphism. In Springer GbRPR, 2017.Google Scholar
- V. Carletti et al. The VF3-light subgraph isomorphism algorithm: when doing less is more effective. In Springer S+SSPR, 2018.Google Scholar
- V. Carletti et al. A parallel algorithm for subgraph isomorphism. In Springer GbRPR, 2019.Google ScholarCross Ref
- F. Cazals and C. Karande. A note on the problem of reporting maximal cliques. Theoretical Computer Science, 407(1--3):564--568, 2008. Google ScholarDigital Library
- P. Celis. Robin hood hashing. University of Waterloo, 1986. Google ScholarDigital Library
- D. Chakrabarti and C. Faloutsos. Graph mining: Laws, generators, and algorithms. ACM CSUR, 2006. Google ScholarDigital Library
- S. Chambi, D. Lemire, O. Kaser, and R. Godin. Better bitmap performance with roaring bitmaps. Software: practice and experience, 46(5):709--719, 2016. Google ScholarDigital Library
- S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron. Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE international symposium on workload characterization (IISWC), pages 44--54. Ieee, 2009. Google ScholarDigital Library
- H. Chen, M. Liu, Y. Zhao, X. Yan, D. Yan, and J. Cheng. G-miner: an efficient task-oriented graph mining system. In Proceedings of the Thirteenth EuroSys Conference, page 32. ACM, 2018. Google ScholarDigital Library
- X. Chen, R. Dathathri, G. Gill, and K. Pingali. Pangolin: An efficient and flexible graph mining system on cpu and gpu. arXiv preprint arXiv:1911.06969, 2019. Google ScholarDigital Library
- J. Cheng, L. Zhu, Y. Ke, and S. Chu. Fast algorithms for maximal clique enumeration with limited memory. In Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 1240--1248, 2012. Google ScholarDigital Library
- N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal on computing, 14(1):210--223, 1985. Google ScholarDigital Library
- A. Ching et al. One trillion edges: Graph processing at facebook-scale. VLDB, 2015. Google ScholarDigital Library
- D. J. Cook and L. B. Holder. Mining graph data. John Wiley & Sons, 2006. Google ScholarDigital Library
- L. P. Cordella et al. A (sub) graph isomorphism algorithm for matching large graphs. IEEE TPAMI, 2004. Google ScholarDigital Library
- M. Danisch et al. Listing k-cliques in sparse real-world graphs. In WWW, 2018. Google ScholarDigital Library
- A. Das et al. Shared-memory parallel maximal clique enumeration. In IEEE HiPC, 2018. Google ScholarDigital Library
- A. Das, M. Svendsen, and S. Tirthapura. Change-sensitive algorithms for maintaining maximal cliques in a dynamic graph. CoRR, vol. abs/1601.06311, 2016.Google Scholar
- C. Demetrescu, A. V. Goldberg, and D. S. Johnson. The Shortest Path Problem: Ninth DIMACS Implementation Challenge, volume 74. American Math. Soc., 2009.Google ScholarCross Ref
- L. Dhulipala et al. Theoretically efficient parallel graph algorithms can be fast and scalable. In ACM SPAA, 2018. Google ScholarDigital Library
- L. Dhulipala, J. Shi, T. Tseng, G. E. Blelloch, and J. Shun. The graph based benchmark suite (gbbs). In GRADES and NDA, pages 1--8, 2020. Google ScholarDigital Library
- V. Dias et al. Fractal: A general-purpose graph pattern mining system. In ACM SIGMOD, 2019. Google ScholarDigital Library
- R. Diestel. Graph theory. Springer, 2018. Google ScholarDigital Library
- N. Du, B. Wu, L. Xu, B. Wang, and X. Pei. A parallel algorithm for enumerating all maximal cliques in complex network. In Sixth IEEE International Conference on Data Mining-Workshops (ICDMW'06), pages 320--324. IEEE, 2006. Google ScholarDigital Library
- J. D. Eblen, C. A. Phillips, G. L. Rogers, and M. A. Langston. The maximum clique enumeration problem: algorithms, applications, and implementations. In BMC bioinformatics, volume 13, page S5. Springer, 2012. Google ScholarDigital Library
- D. Eppstein et al. Listing all maximal cliques in sparse graphs in near-optimal time. In SAAC, 2010.Google ScholarCross Ref
- D. Eppstein and D. Strash. Listing all maximal cliques in large sparse real-world graphs. In International Symposium on Experimental Algorithms, pages 364--375. Springer, 2011. Google ScholarDigital Library
- P. Erdős and A. Rényi. On the evolution of random graphs. Selected Papers of Alfréd Rényi, 1976.Google Scholar
- M. Farach-Colton and M. Tsai. Computing the degeneracy of large graphs. In LATIN, 2014.Google Scholar
- B. Gallagher. Matching structure and semantics: A survey on graph-based pattern matching. In AAAI Fall Symposium: Capturing and Using Patterns for Evidence Detection, pages 45--53, 2006.Google Scholar
- M. Han, K. Daudjee, K. Ammar, M. T. Özsu, X. Wang, and T. Jin. An experimental comparison of pregel-like graph processing systems. Proceedings of the VLDB Endowment, 7(12):1047--1058, 2014. Google ScholarCross Ref
- S. Han, L. Zou, and J. X. Yu. Speeding up set intersections in graph algorithms using simd instructions. In Proceedings of the 2018 International Conference on Management of Data, pages 1587--1602. ACM, 2018. Google ScholarDigital Library
- W.-S. Han et al. Turbo iso: towards ultrafast and robust subgraph isomorphism search in large graph databases. In ACM SIGMOD/PODS. ACM, 2013. Google ScholarDigital Library
- W. Hasenplaugh, T. Kaler, T. B. Schardl, and C. E. Leiserson. Ordering heuristics for parallel graph coloring. In 26th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA '14, Prague, Czech Republic - June 23 - 25, 2014, pages 166--177, 2014. Google ScholarDigital Library
- T. Horváth et al. Cyclic pattern kernels for predictive graph mining. In Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2004. Google ScholarDigital Library
- M. Injadat, F. Salo, and A. B. Nassif. Data mining techniques in social media: A survey. Neurocomputing, 214:654--670, 2016. Google ScholarDigital Library
- A. P. Iyer, Z. Liu, X. Jin, S. Venkataraman, V. Braverman, and I. Stoica. {ASAP}: Fast, approximate graph pattern mining at scale. In 13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18), pages 745--761, 2018. Google ScholarDigital Library
- S. Jabbour, N. Mhadhbi, B. Raddaoui, and L. Sais. Pushing the envelope in overlapping communities detection. In International Symposium on Intelligent Data Analysis, pages 151--163. Springer, 2018.Google ScholarCross Ref
- K. Jamshidi, R. Mahadasa, and K. Vora. Peregrine: a pattern-aware graph mining system. In Proceedings of the Fifteenth European Conference on Computer Systems, pages 1--16, 2020. Google ScholarDigital Library
- R. A. Jarvis and E. A. Patrick. Clustering using a similarity measure based on shared near neighbors. IEEE Transactions on computers, 100(11):1025--1034, 1973. Google ScholarDigital Library
- C. Jiang, F. Coenen, and M. Zito. A survey of frequent subgraph mining algorithms. The Knowledge Engineering Review, 28(1):75--105, 2013.Google ScholarCross Ref
- D. S. Johnson, M. Yannakakis, and C. H. Papadimitriou. On generating all maximal independent sets. Information Processing Letters, 27(3):119--123, 1988. Google ScholarDigital Library
- A. Joshi, Y. Zhang, P. Bogdanov, and J.-H. Hwang. An efficient system for subgraph discovery. In 2018 IEEE International Conference on Big Data (Big Data), pages 703--712. IEEE, 2018.Google ScholarCross Ref
- D. R. Karger and C. Stein. A new approach to the minimum cut problem. Journal of the ACM (JACM), 43(4):601--640, 1996. Google ScholarDigital Library
- W. Khaouid et al. K-core decomposition of large networks on a single pc. Proceedings of the VLDB Endowment, 9(1):13--23, 2015. Google ScholarDigital Library
- I. Koch. Enumerating all connected maximal common subgraphs in two graphs. Theoretical Computer Science, 250(1--2):1--30, 2001. Google ScholarDigital Library
- F. Kose, W. Weckwerth, T. Linke, and O. Fiehn. Visualizing plant metabolomic correlation networks using clique-metabolite matrices. Bioinformatics, 17(12):1198--1208, 2001.Google ScholarCross Ref
- J. Kunegis. Konect: the koblenz network collection. In Proc. of Intl. Conf. on World Wide Web (WWW), pages 1343--1350. ACM, 2013. Google ScholarDigital Library
- V. E. Lee, N. Ruan, R. Jin, and C. Aggarwal. A survey of algorithms for dense subgraph discovery. In Managing and Mining Graph Data, pages 303--336. Springer, 2010. Google ScholarDigital Library
- E. A. Leicht et al. Vertex similarity in networks. Physical Review E, 73(2):026120, 2006.Google ScholarCross Ref
- D. Lemire, O. Kaser, N. Kurz, L. Deri, C. O'Hara, F. Saint-Jacques, and G. Ssi-Yan-Kai. Roaring bitmaps: Implementation of an optimized software library. Software: Practice and Experience, 48(4):867--895, 2018.Google ScholarCross Ref
- J. Leskovec et al. Kronecker graphs: An approach to modeling networks. J. of Machine Learning Research, 11(Feb):985--1042, 2010. Google ScholarDigital Library
- J. Leskovec and A. Krevl. SNAP Datasets: Stanford large network dataset collection. http://snap.stanford.edu/data, June 2014.Google Scholar
- B. Lessley, T. Perciano, M. Mathai, H. Childs, and E. W. Bethel. Maximal clique enumeration with data-parallel primitives. In 2017 IEEE 7th Symposium on Large Data Analysis and Visualization (LDAV), pages 16--25. IEEE, 2017.Google ScholarCross Ref
- D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks. Journal of the American society for information science and technology, 58(7):1019--1031, 2007. Google ScholarDigital Library
- H. Lin et al. Shentu: processing multi-trillion edge graphs on millions of cores in seconds. In ACM/IEEE Supercomputing. IEEE Press, 2018.Google Scholar
- L. Lu, Y. Gu, and R. Grossman. dmaximalcliques: A distributed algorithm for enumerating all maximal cliques and maximal clique distribution. In 2010 IEEE International Conference on Data Mining Workshops, pages 1320--1327. IEEE, 2010. Google ScholarDigital Library
- L. Lü and T. Zhou. Link prediction in complex networks: A survey. Physica A: statistical mechanics and its applications, 390(6):1150--1170, 2011.Google Scholar
- K. Makino and T. Uno. New algorithms for enumerating all maximal cliques. In Scandinavian workshop on algorithm theory, pages 260--272. Springer, 2004.Google ScholarCross Ref
- G. Manoussakis. An output sensitive algorithm for maximal clique enumeration in sparse graphs. In 12th International Symposium on Parameterized and Exact Computation (IPEC 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.Google Scholar
- D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring algorithms. JACM, 1983. Google ScholarDigital Library
- D. Mawhirter, S. Reinehr, C. Holmes, T. Liu, and B. Wu. Graphzero: Breaking symmetry for efficient graph mining. arXiv preprint arXiv:1911.12877, 2019.Google Scholar
- D. Mawhirter and B. Wu. Automine: harmonizing high-level abstraction and high performance for graph mining. In Proceedings of the 27th ACM Symposium on Operating Systems Principles, pages 509--523. ACM, 2019. Google ScholarDigital Library
- C. McCreesh and P. Prosser. A parallel, backjumping subgraph isomorphism algorithm using supplemental graphs. In CP. Springer, 2015.Google ScholarCross Ref
- G. L. Miller et al. Improved parallel algorithms for spanners and hopsets. In ACM SPAA. ACM, 2015. Google ScholarDigital Library
- Z. Ming, C. Luo, W. Gao, R. Han, Q. Yang, L. Wang, and J. Zhan. Bdgs: A scalable big data generator suite in big data benchmarking. In Advancing Big Data Benchmarks, pages 138--154. Springer, 2013.Google Scholar
- P. J. Mucci, S. Browne, C. Deane, and G. Ho. Papi: A portable interface to hardware performance counters. In Proceedings of the department of defense HPCMP users group conference, volume 710, 1999.Google Scholar
- R. C. Murphy et al. Introducing the graph 500. Cray User's Group (CUG), 2010.Google Scholar
- L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin. Graphbig: understanding graph computing in the context of industrial solutions. In SC'15: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1--12. IEEE, 2015. Google ScholarDigital Library
- T. J. Ottosen and J. Vomlel. Honour thy neighbour---clique maintenance in dynamic graphs. on Probabilistic Graphical Models, page 201, 2010.Google Scholar
- S. Parthasarathy, S. Tatikonda, and D. Ucar. A survey of graph mining techniques for biological datasets. In Managing and mining graph data, pages 547--580. Springer, 2010.Google ScholarCross Ref
- U. N. Raghavan et al. Near linear time algorithm to detect community structures in large-scale networks. Physical review E, 76(3):036106, 2007.Google Scholar
- T. Ramraj and R. Prabhakar. Frequent subgraph mining algorithms-a survey. Procedia Computer Science, 47:197--204, 2015.Google ScholarCross Ref
- S. U. Rehman, A. U. Khan, and S. Fong. Graph mining: A survey of graph mining techniques. In Seventh International Conference on Digital Information Management (ICDIM 2012), pages 88--92. IEEE, 2012.Google ScholarCross Ref
- P. Ribeiro, P. Paredes, M. E. Silva, D. Aparicio, and F. Silva. A survey on subgraph counting: Concepts, algorithms and applications to network motifs and graphlets. arXiv preprint arXiv:1910.13011, 2019. Google ScholarDigital Library
- I. Robinson, J. Webber, and E. Eifrem. Graph databases. "O'Reilly Media, Inc.", 2013. Google ScholarDigital Library
- R. A. Rossi and N. K. Ahmed. The network data repository with interactive graph analytics and visualization. In AAAI, 2015. Google ScholarDigital Library
- S. E. Schaeffer. Graph clustering. Computer science review, 1(1):27--64, 2007. Google ScholarDigital Library
- T. Schank. Algorithmic aspects of triangle-based network analysis. Phd in computer science, University Karlsruhe, 3, 2007.Google Scholar
- M. C. Schmidt, N. F. Samatova, K. Thomas, and B.-H. Park. A scalable, parallel algorithm for maximal clique enumeration. Journal of Parallel and Distributed Computing, 69(4):417--428, 2009. Google ScholarDigital Library
- J. Shun and G. E. Blelloch. Ligra: a lightweight graph processing framework for shared memory. In ACM SIGPLAN Notices, volume 48, pages 135--146, 2013. Google ScholarDigital Library
- J. Shun and K. Tangwongsan. Multicore triangle computations without tuning. In Data Engineering (ICDE), 2015 IEEE 31st International Conference on, pages 149--160. IEEE, 2015.Google ScholarCross Ref
- C. L. Staudt and H. Meyerhenke. Engineering parallel algorithms for community detection in massive networks. IEEE Transactions on Parallel and Distributed Systems, 27(1):171--184, 2015. Google ScholarDigital Library
- V. Stix. Finding all maximal cliques in dynamic graphs. Computational Optimization and applications, 27(2):173--186, 2004. Google ScholarDigital Library
- J. A. Stratton, C. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang, N. Anssari, G. D. Liu, and W.-m. W. Hwu. Parboil: A revised benchmark suite for scientific and commercial throughput computing. Center for Reliable and High-Performance Computing, 127, 2012.Google Scholar
- M. Svendsen, A. P. Mukherjee, and S. Tirthapura. Mining maximal cliques from a large graph using mapreduce: Tackling highly uneven subproblem sizes. Journal of Parallel and distributed computing, 79:104--114, 2015. Google ScholarDigital Library
- L. Tang and H. Liu. Graph mining applications to social network analysis. In Managing and Mining Graph Data, pages 487--513. Springer, 2010.Google ScholarCross Ref
- Y. Tang. Benchmarking graph databases with cyclone benchmark. 2016.Google Scholar
- B. Taskar et al. Link prediction in relational data. In NIPS, pages 659--666, 2004. Google ScholarDigital Library
- C. H. Teixeira et al. Arabesque: a system for distributed graph mining. In Proceedings of the 25th Symposium on Operating Systems Principles, pages 425--440. ACM, 2015. Google ScholarDigital Library
- L. T. Thomas, S. R. Valluri, and K. Karlapalem. Margin: Maximal frequent subgraph mining. ACM Transactions on Knowledge Discovery from Data (TKDD), 4(3):1--42, 2010. Google ScholarDigital Library
- E. Tomita, A. Tanaka, and H. Takahashi. The worst-case time complexity for generating all maximal cliques and computational experiments. Theor. Comput. Sci., 363(1):28--42, 2006. Google ScholarDigital Library
- S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for generating all the maximal independent sets. SIAM Journal on Computing, 6(3):505--517, 1977.Google ScholarCross Ref
- J. R. Ullmann. An algorithm for subgraph isomorphism. Journal of the ACM (JACM), 23(1):31--42, 1976. Google ScholarDigital Library
- K. Wang, Z. Zuo, J. Thorpe, T. Q. Nguyen, and G. H. Xu. Rstream: marrying relational algebra with streaming for efficient graph mining on a single machine. In 13th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 18), pages 763--782, 2018. Google ScholarDigital Library
- L. Wang, K. Hu, and Y. Tang. Robustness of link-prediction algorithm based on similarity and application to biological networks. Current Bioinformatics, 9(3):246--252, 2014.Google ScholarCross Ref
- L. Wang, J. Zhan, C. Luo, Y. Zhu, Q. Yang, Y. He, W. Gao, Z. Jia, Y. Shi, S. Zhang, et al. Bigdatabench: A big data benchmark suite from internet services. In 2014 IEEE 20th international symposium on high performance computer architecture (HPCA), pages 488--499. IEEE, 2014.Google ScholarCross Ref
- T. Washio and H. Motoda. State of the art of graph-based data mining. Acm Sigkdd Explorations Newsletter, 5(1):59--68, 2003. Google ScholarDigital Library
- B. Wu, S. Yang, H. Zhao, and B. Wang. A distributed algorithm to enumerate all maximal cliques in mapreduce. In 2009 Fourth International Conference on Frontier of Computer Science and Technology, pages 45--51. IEEE, 2009. Google ScholarDigital Library
- Y. Xu, J. Cheng, and A. W.-C. Fu. Distributed maximal clique computation and management. IEEE Transactions on Services Computing, 9(1):110--122, 2015.Google Scholar
- Z. Xu, X. Chen, J. Shen, Y. Zhang, C. Chen, and C. Yang. Gardenia: A graph processing benchmark suite for next-generation accelerators. ACM Journal on Emerging Technologies in Computing Systems (JETC), 15(1):1--13, 2019. Google ScholarDigital Library
- D. Yan, H. Chen, J. Cheng, M. T. Özsu, Q. Zhang, and J. Lui. G-thinker: big graph mining made easier and faster. arXiv preprint arXiv:1709.03110, 2017.Google Scholar
- D. Yan, W. Qu, G. Guo, and X. Wang. Prefixfpm: A parallel framework for general-purpose frequent pattern mining. In Proceedings of the 36th IEEE International Conference on Data Engineering (ICDE) 2020, 2020.Google ScholarCross Ref
- P. Yao et al. A locality-aware energy-efficient accelerator for graph mining applications. In IEEE/ACM MICRO, pages 895--907. IEEE, 2020.Google ScholarCross Ref
- Y. Zhang et al. Genome-scale computational approaches to memory-intensive applications in systems biology. In ACM/IEEE Supercomputing, pages 12--12. IEEE, 2005. Google ScholarDigital Library
- C. Zhao, Z. Zhang, P. Xu, T. Zheng, and X. Cheng. Kaleido: An efficient out-of-core graph mining system on a single machine. arXiv preprint arXiv:1905.09572, 2019.Google Scholar
Index Terms
(auto-classified)GraphMineSuite: enabling high-performance and programmable graph mining algorithms with set algebra
Comments